## RELATIONS AND FUNCTIONS MODULE 2 (II)

S
$\underline{y}$


## How to prove a function, one to one and onto?

## One-One Function (Injective mapping)

A function $f: A \rightarrow B$ is said to be a one-one function or injective mapping if different elements of $A$ have different $f$ images in $B$. Thus for $x_{1}, x_{2} \in A$ and $f\left(x_{1}\right), f\left(x_{2}\right) \in B$.
$f\left(x_{1}\right)=f\left(x_{2}\right) \Leftrightarrow x_{1}=x_{2}$ or $x_{1} \neq x_{2} \Leftrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$.
Onto Function (Surjective mapping)
If the function $f: A \longrightarrow B$ is such that each element in $B$ (co-domain) is the $f$ image of at least one element in $A$, then we say that $f$ is a function of $A$ 'onto' $B$.
Thus, $f: A \rightarrow B$ is surjective iff $\forall b \in B$, $\exists$ some $a \in A$ such that $f(a)=b$.
A function $f: X \rightarrow Y$ is one-one and onto (or bijective), if $f$ is both one-one and onto
Q) Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
(i) $\{(x, y): x$ is a person, $y$ is the mother of $x\}$.
(ii) $\{(a, b): a$ is $a$ person, $b$ is an ancestor of $a\}$.

Sol. (i) Given set of ordered pair is $\{(x, y)$ : xis a person, $y$ is the mother of $x\}$
It represents a function. Here, the image of distinct elements of $x$ under $f$ are not distinct, so it is not injective but it is surjective.
(ii) Set of ordered pairs $=\{(a, b): a$ is a person, $b$ is an ancestor of $a\}$.

Here, each element of domain does not have a unique image. So, it does not represent

Example 8
Show that the function $f: N \rightarrow N$, given by $f(x)=2 x$, is one-one but not onto.

Given,

$$
f(x)=2 x
$$

One-One
$f\left(x_{1}\right)=2 x_{1}$
$f\left(x_{2}\right)=2 x_{2}$

Putting

$$
\begin{aligned}
& f\left(x_{1}\right)=f\left(x_{2}\right) \\
& 2 x_{1}=2 x_{2} \\
& x_{1}=x_{2}
\end{aligned}
$$

Hence, if $f\left(x_{1}\right)=f\left(x_{2}\right), x_{1}=x_{2}$
function $f$ is one-one

```
Rough
One-one Steps:
1. Calculate f(x, )
2. Calculate f(x, )
3. Putting f(\mp@subsup{x}{1}{})=f(\mp@subsup{x}{2}{})
    we have to prove }\mp@subsup{x}{1}{}=\mp@subsup{x}{2}{
```

Further, $f$ is not onto, as for $1 \in \mathbf{N}$, there does not exist any $x$ in $\mathbf{N}$ such that $f(x)=2 x=1$.

$$
f(x)=\frac{x-2}{x-3}: R-\{3\} \rightarrow R-\{1\} \text {. Prove } \mathrm{f} \text { is one to one and onto }
$$

$$
\begin{gathered}
\text { Let } f\left(x_{1}\right)=f\left(x_{2}\right), x_{1}, x_{2} \in R-\{3\} \\
\frac{x_{1}-2}{x_{1}-3}=\frac{x_{2}-2}{x_{2}-3} \\
\left(x_{1}-2\right)\left(x_{2}-3\right)=\left(x_{2}-2\right)\left(x_{1}-3\right) \\
x_{1} x_{2}-3 x_{1}-2 x_{2}+6=x_{1} x_{2}-3 x_{2}-2 x_{1}+6 \\
-x_{1}=-x_{2} \\
x_{1}=x_{2}
\end{gathered}
$$

Hence $f$ is one to one

$$
\begin{gathered}
\text { Let } y=\frac{x-2}{x-3} \\
x=\frac{3 y-2}{y-1}, \quad y \in R-\{1\} .
\end{gathered}
$$

For all elements $y \epsilon$ codomain, $x \in$ domain. Hence $f$ is onto.

## Ex 1.2, 9

Let $\mathrm{f}: \mathbf{N} \rightarrow \mathbf{N}$ be defined by $\mathrm{f}(\mathrm{n})=\left\{\begin{array}{l}\frac{n+1}{2}, \text { if } n \text { is odd } \\ \frac{n}{2}, \text { if } n \text { is even }\end{array}\right.$ for all $\mathrm{n} \in \mathbf{N}$.
State whether the function $f$ is bijective. Justify your answer. Solution:
$f(n)=\left\{\begin{array}{l}\frac{n+1}{2}, \text { if } n \text { is odd } \\ \frac{n}{2}, \text { if } n \text { is even }\end{array}\right.$ for all $n \in \mathbf{N}$.
Check one-one

$$
\begin{array}{ll}
f(1)=\frac{1+1}{2}=\frac{2}{2}=1 & \text { (Since } 1 \text { is odd) } \\
f(2)=\frac{2}{2}=1 & \text { (Since } 2 \text { is even) }
\end{array}
$$

Since, $f(1)=f(2)$ but $1 \neq 2$
Both $f(1)$ \& $f(2)$ have same image $1 \quad \therefore \mathrm{f}$ is not one-one

## Check onto

 Let $f(x)=y$, such that $y \in N$When n is odd

$$
\begin{gathered}
y=\frac{n+1}{2} \\
2 y=n+1 \\
2 y-1=n \\
n=2 y-1
\end{gathered}
$$

Hence, for $y$ is a natural number, $\mathrm{n}=2 \mathrm{y}-1$ is also a natural number Thus,
for every $y \in \mathbf{N}$, there exists $x \in \mathbf{N}$ such that $f(n)=y$
Hence, $f$ is onto. Hence the given function is not bijective.

## Example 12

Show that $\mathrm{f}: \mathbf{N} \rightarrow \mathbf{N}$, given by $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}x+1, \text { if } x \text { is odd } \\ x-1, \text { if } x \text { is even }\end{array}\right.$ is both one-one and onto.

## Check one-one

There can be 3 cases

> Rough
> One-one Steps:
> 1. Calculate $f\left(x_{1}\right)$
> 2. Calculate $f\left(x_{2}\right)$
> 3. Putting $f\left(x_{1}\right)=f\left(x_{2}\right)$
> we have to prove $x_{1}=x_{2}$

## If $x_{1} \& x_{2}$ are both odd

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{x}_{1}+1 \\
& \mathrm{f}\left(\mathrm{x}_{2}\right)=\mathrm{x}_{2}+1
\end{aligned}
$$

Putting $f\left(x_{1}\right)=f\left(x_{2}\right)$

$$
\begin{aligned}
& x_{1}+1=x_{2}+1 \\
& x_{1}=x_{2}
\end{aligned}
$$



$$
\begin{aligned}
& f\left(x_{1}\right)=x_{1}-1 \\
& f\left(x_{2}\right)=x_{2}-1
\end{aligned}
$$

$$
f\left(x_{1}\right)=x_{1}+1
$$

$$
f\left(x_{2}\right)=x_{2}-1
$$

$$
\begin{aligned}
& \text { If } \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right) \\
& \begin{array}{l}
\mathrm{x}_{1}-1=\mathrm{x}_{2}-1 \\
\mathrm{x}_{1}=\mathrm{x}_{2}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right) \\
& \begin{aligned}
\mathrm{x}_{1}+1=\mathrm{x}_{2}-1 \\
\mathrm{x}_{2}-\mathrm{x}_{1}=2
\end{aligned}
\end{aligned}
$$

which is impossible as difference between even and odd number can never be even

Hence, if $f\left(x_{1}\right)=f\left(x_{2}\right)$,
Then $\mathrm{x}_{1}=\mathrm{x}_{2}$
$\therefore$ function f is one-one

## Check onto

$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}x+1, \text { if } x \text { is odd } \\ x-1, \text { if } x \text { is even }\end{array}\right.$

Let $f(x)=y$, such that $y \in N$
M
If $x$ is odd

$$
\begin{aligned}
& f(x)=x+1 \\
& y=x+1 \\
& y-1=x \\
& x=y-1
\end{aligned}
$$

If x is odd, y is even

|  | $x=\left\{\begin{array}{c}y-1, \text { if } y \text { is even } \\ y+1, \text { if } y \text { is odd }\end{array}\right.$ |
| :--- | :--- |
| If $x$ is eve, |  |
| $f(x)=x-1$ | Hence, if $y$ is a natural number, |
| $y=x-1$, | $x$ will also be a natural number i.e. $x \in N$ |
| $y+1=$, |  |
| $x=y+1$ |  |
| If $x$ is even, $y$ is odd | Thus, $f$ is onto. |

Example: Consider f: $N \rightarrow R, f(x)=4 x^{2}+12 x+15$ Show that $\mathrm{f}: N \rightarrow \mathrm{R}$ is one to one. Is $\mathrm{f}(\mathrm{x})$ onto? Why?

$$
\begin{gathered}
\text { Let } f\left(x_{1}\right)=f\left(x_{2}\right), x_{1}, x_{2} \in N \\
4 x_{1}^{2}+12 x_{1}+15=4 x_{2}^{2}+12 x_{2}+15 \\
4\left(x_{1}^{2}-x_{2}^{2}\right)+12\left(x_{1}-x_{2}\right)=0 \\
4\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}+3\right)=0 \\
\left.x_{1}=x_{2}, \text { OR } x_{1}+x_{2}=-3 \text { (rejected }\right)
\end{gathered}
$$

$f$ is one to one.

Example: Consider $\mathrm{f}: N \rightarrow R, f(x)=4 x^{2}+12 x+15$ Show that $\mathrm{f}: N \rightarrow \mathrm{R}$ is one to one. Is $\mathrm{f}(\mathrm{x})$ onto? Why?

$$
\begin{aligned}
& y=4 x^{2}+12 x+15 \\
& y=(2 x+3)^{2}-9+15 \\
& x=\frac{\sqrt{y-6}-3}{2}, y \geq 6 \\
& \text { but } y \in R \Rightarrow f \text { is not onto }
\end{aligned}
$$

NOTE: If $\mathrm{f}: N \rightarrow$ range of f , then f is onto. Hence $f$ is one to one and onto


